Splitting Input Sentence for Machine Translation Using Language Model with Sentence Similarity

نویسندگان

  • Takao Doi
  • Eiichiro Sumita
چکیده

In order to boost the translation quality of corpus-based MT systems for speech translation, the technique of splitting an input sentence appears promising. In previous research, many methods used N-gram clues to split sentences. In this paper, to supplement N-gram based splitting methods, we introduce another clue using sentence similarity based on edit-distance. In our splitting method, we generate candidates for sentence splitting based on N-grams, and select the best one by measuring sentence similarity. We conducted experiments using two EBMT systems, one of which uses a phrase and the other of which uses a sentence as a translation unit. The translation results on various conditions were evaluated by objective measures and a subjective measure. The experimental results show that the proposed method is valuable for both systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

Splitting Long Input Sentences for Phrase-based Statistical Machine Translation

Translation results suffer when a standard phrasebased statistical machine translation system is used for translating long sentences. The translation output will not have the same word order as the source. When a sentence is long, it should be partitioned into several clauses, and the word reordering during the translation done within these clauses, not between the clauses. In this paper, we pr...

متن کامل

A Semantic Feature for Statistical Machine Translation

A semantic feature for statistical machine translation, based on Latent Semantic Indexing, is proposed and evaluated. The objective of the proposed feature is to account for the degree of similarity between a given input sentence and each individual sentence in the training dataset. This similarity is computed in a reduced vectorspace constructed by means of the Latent Semantic Indexing decompo...

متن کامل

Convolutional Encoders for Neural Machine Translation

We propose a general Convolutional Neural Network (CNN) encoder model for machine translation that fits within in the framework of Encoder-Decoder models proposed by Cho, et. al. [1]. A CNN takes as input a sentence in the source language, performs multiple convolution and pooling operations, and uses a fully connected layer to produce a fixed-length encoding of the sentence as input to a Recur...

متن کامل

Input Sentence Splitting and Translating

We propose a method to split and translate input sentences for speech translation in order to overcome the long sentence problem. This approach is based on three criteria used to judge the goodness of translation results. The criteria utilize the output of an MT system only and assumes neither a particular language nor a particular MT approach. In an experiment with an EBMT system, in which pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004